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Abstract. In high alpine environments, climate change leads to an increase in rockfall destabilizations. They represent a threat 

for sports and tourism activities in high mountain and especially for mountaineering. This danger of rockfall is particularly 15 

important on the classic route up Mont Blanc (4,809 m a.s.l., Mont Blanc massif, France), on the west face of the Aiguille du 

Goûter (3,863 m a.s.l.), and is responsible for at least 29% of the accidents that occur in this sector. Despite the intensity of 

the geomorphological processes at work and the vulnerability of climbers, few scientific studies have been carried out on the 

occurrence of rockfalls and their triggering factors in the Goûter area. Based on a multi-method monitoring system (5 seismic 

sensors, an automatic digital camera, 3 subsurface temperature sensors, a pyroelectric sensor, a high-resolution topographical 20 

survey, 2 weather stations and a rain gauge) the objective of our study is therefore to quantitatively document the occurrence 

of rockfalls and their triggering factors in the Grand Couloir du Goûter in order to better assess the vulnerability of 

mountaineers in this sector. Our results show that in the high-Alpine and permafrost-affected Aiguille du Goûter west face, 

rockfalls are mostly frequent during the snowmelt period which favors the action of thermo-mechanical processes linked to 

the infiltration of liquid water into the cracks of the rock. During periods when the couloir is completely clear of snow, rockfalls 25 

are 2.5 times less frequent, and the thermo-mechanical processes involved in the rockfall triggering are limited by the absence 

of moisture in the ground. These results also show that climbers' awareness of the risk of rockfalls remains limited. What’s 

more, they do not adapt – or only slightly – their behavior to this risk, despite a particularly high accident rate. Important work 

on prevention and dissemination of the knowledge here acquired (newsletters, training for professionals and amateurs, 

awareness campaigns) among mountaineers is therefore still really necessary. 30 
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1 Introduction 

Climate change leads to deep changes in high alpine environments (Beniston et al. 2018; IPCC, 2019) and, in particular, to 

rock faces increasingly destabilized (Harris et al. 2001; Gruber and Haeberli, 2007; Ravanel and Deline, 2010; Allen and 

Huggel, 2013; Ravanel et al. 2017). These changes represent a threat to sports and tourism activities in high mountains, some 

with a high economic and heritage value such as mountaineering (Ritter et al. 2011; Temme, 2015; Probstl-Haider et al. 2016; 35 

Purdie and Kerr, 2018; Mourey et al. 2019; Mourey et al. 2020), recently inscribed by UNESCO on the Representative List of 

the Intangible Cultural Heritage of Humanity (Debarbieux, 2020). 

Despite a growing body of scientific literature, several international entities such as the World Meteorological Organization 

(WMO), the Intergovernmental Panel on Climate Change (IPCC) and the Mountain Research Initiative (MRI) agreed on the 

profound lack of knowledge on the vulnerability to climate change to climate change of socio-economic activities in mountains. 40 

Echoing this observation, a review of studies on adaptation actions in glaciated mountain areas (McDowell et al. 2019) showed 

that the majority of adaptation strategies are implemented in direct reaction to stimuli and do not respond to well thought-out 

plans, based on scientific knowledge and taking into account all the interacting socio-economic factors as well as the future 

effects of climate change. This results in a significant lack of medium- and long-term efficiency of these adaptation strategies. 

In this context, this article presents an interdisciplinary study whose objective is to better assess the vulnerability of 45 

mountaineers climbing the classic route up Mont Blanc (4,809 m a.s.l., Mont Blanc massif – MBM – France), the highest 

summit in the European Alps. This route is undoubtedly one of the most popular in the world, but its climbing parameters 

(technical difficulty, level of exposure to objective dangers and optimal period for making an ascent) have significantly 

changed due to the effects of climate change (Mourey et al. 2019). This evolution is mostly due to an increasing number of 

rockfalls in the west face of the Aiguille du Goûter (3,863 m a.s.l.) including the crossing of the Grand Couloir du Goûter and 50 

the ascent of the Goûter rock ridge ("arête du Goûter") leading to the Goûter refuge located at 3,835 m a.s.l. This sector is 

probably the most accident-prone area in the Alps for mountaineers, with an average of 3.7 fatal accidents and 8.5 injuries per 

summer season since 1990 (Mourey et al. 2018), hence its reputation in the media as the "couloir of death". Rockfalls directly 

explain at least 29% of the accidents and are partly involved in the accidents due to a fall, which account for 50% of the 

accidents (Mourey et al. 2018). 55 

Despite the intensity of the geomorphological processes at work and the vulnerability of climbers, few scientific studies have 

been carried out on the occurrence of rockfalls and their triggering factors in the Goûter area. Based on 42 days of in situ visual 

observations during the day (8 am – 6 pm) in the summer 2011, Alpes-Ingé (2012) quantified the rockfall frequency. However, 

this study has many limitations: destabilisations were not measured over the whole season nor during periods of bad weather 

(rain, fog, thunderstorms), nor at the end of the day, night and early morning. Lemarechal (2011) proposed, on the basis of a 60 

trajectography study, various possibilities for securing the crossing of the couloir (purging of the face, signalling, installation 

of block nets, protection of the crossing with a concrete structure, installation of a footbridge, etc.). However, until now, no 
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continuous observation of rockfalls was available to better characterize their occurrence and their triggering factors 

(temperature, rainfall, snow cover, human activity). 

The objective of our study is therefore to quantitatively document the occurrence of rockfalls and their triggering factors in the 65 

Grand Couloir du Goûter which is located in context of permafrost according to Magnin et al. (2015). Permafrost refers to any 

lithospheric materials with temperature remaining below 0°C for at least two consecutive years (Dobinski, 2011). The acquired 

knowledge should then help the development of adaptive behaviours among climbers and, as a result, reduce the number of 

accidents in this area. To meet this objective, an innovative interdisciplinary monitoring system was set up in 2016 and became 

fully operational in 2019. Thanks to seven different methodologies, it led to the measurement of rockfalls frequency and 70 

intensity, the evolution of the snow cover in the couloir, the temperature of the rock, the air temperature, the rainfall and the 

climber traffic in the couloir. The comparison between rockfall occurrences and environmental parameters should enable us 

to identify the most favourable conditions for rockfall, while the analysis of the attendance levels should allow to better 

evaluate their vulnerability in this particularly accident-prone sector. 

2 Rockfall triggering factors in high alpine environments 75 

In context of permafrost in high alpine environments, rockfall occurrence is preconditioned by the lithological and structural 

characteristics of the rock (especially its degree of fracturing) and the topography (Krautblatter et al. 2013; Mc Coll and 

Draebing, 2019). Then, climatic and meteorological factors such as the presence/absence of snow, precipitation and air 

temperature will initiate thermo-mechanical processes involved in the rockfall triggering (Fig. 1). 

In permafrost-affected rockwalls, thermal processes are characterized by heat flux between the surface and the depth of the 80 

rock masses by conduction along a temperature gradient in intact rock (McColl and Dreabing, 2019), and/or by advection 

through percolation of water along fractures (Gruber and Haeberli, 2007; McColl and Dreabing, 2019), and/or by convection 

due to the air and water circulation along the fractures (Moores et al. 2011; McColl and Dreabing, 2019). The action of these 

thermal processes in triggering rockfalls occurs on several time scales (daily, seasonnal, annual). Gruber and Haeberli (2007) 

consider the degree of fracturing of the rock, the presence of snow/ice on the surface and the availability of liquid water as the 85 

key controlling factors of these heat fluxes. The degree of fracturation affects the ability of water and air to infiltrate into the 

rock and the amount of interstitial ice that may be present at depth - that can impede fluid flow. The presence of snow/ice at 

the surface partly controls the temperature of the rock (Magnin et al. 2015) and the amount of liquid water available in the 

rock fractures which also affects advective heat transfers. The opening of cracks during melting periods, i.e. when the amount 

of liquid water is the highest, has been observed by several authors like Wegmann and Gudmundsson (1999), Krautblatter ( 90 

2010), Hasler et al. (2012) or Weber et al. (2017). According to McColl and Draebing (2019), these thermal processes tend to 

be the most efficient in triggering rockfalls in high alpine mountains, ahead of the mechanical processes presented below. 

Conditioned by these thermal processes and meteorological conditions, three mechanical processes – possibly combined – are 

involved in the rockfall triggering (Fig. 1). (i) The increase of hydrostatic pressure in cracks (Krautblatter et al. 2013) due to 
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the infiltration of liquid water, either from melting snow or surface ice or from liquid precipitation. Liquid precipitation is the 95 

phenomenon that brings the most moisture to the ground surface (Sass, 2005a). (ii) The flow/streaming of water at the surface 

of the slope can mobilize small debris on the rock surface (flow force). Krautblatter and Dikau (2007) and Krautblatter and 

Moser (2009) define this type of event as 'secondary rockfall'. (iii) The increase in cryoclastic pressure. When the air 

temperature drops below the melting point, the presence of water in the cracks of the rock will promote an increase in cryostatic 

pressure. A freezing phase is characterised by a volumetric expansion of water (+9%). The water being confined in a limited 100 

space, the increase in volume leads to an increase in cryostatic pressure up to 207 MPa (Matsuoka and Murton, 2008), making 

the opening of cracks and the rock fracturing possible. The repetition of many freeze-thaw cycles will lead to the widening of 

cracks and the fracturing of the rock (frost weathering). The efficiency of freeze-thaw cycles in triggering rockfalls is mainly 

related to the amount of water in the ground (Strass, 2005), the fracture density and the frequency of the cycles (Mamot et al. 

2018). During the freezing phase, cementing of the frozen material generally occurs, which is rather unfavourable for the 105 

initiation of rockfalls. Conversely, the thawing phase is characterised by the warming/melting of the ice, thus a loss of volume 

and a settling of the thawed material, accompanied by a de-cementing and the infiltration of liquid water into the rock fractures, 

favouring rockfalls. Matsuoka (1990) and Seto (2010) differentiate between freeze-thaw cycles (FTC), defined by a drop in 

rock temperature below 0°C followed by an increase above 0°C, and effective freeze-thaw cycles (EFTC) defined by a drop 

in rock temperature below -2°C followed by an increase above 2°C. In addition, Matsuoka (2008) indicates that crack opening 110 

in relation to cryostatic pressure occurs on three different time scales: (i) small openings related to daily freeze-thaw cycles, 

(ii) slightly larger openings during seasonal refreezing, and (iii) even larger but punctual openings related to meltwater 

refreezing. 

In a steep permafrost slope such as the west face of the Aiguille du Goûter, all these thermo-mechanical processes can be 

operating (Fig. 1) and, depending on the conditions, can favour the stability or, on the contrary, slope instability. Draebing et 115 

al. (2014) proposed a conceptual model to understand these interactions and their role in rockfall triggering in permafrost 

context. Two periods particularly conducive to the occurrence of rock destabilization are identified: early summer and autumn. 

In early summer, the infiltration of liquid water from melting snow accelerates the deepening of the active layer - the subsurface 

horizon that thaws during the summer period - along the cracks (Gruber and Haeberli, 2007) and causes the melting of the ice 

in the cracks (Hasler et al. 2011). As a result, the shear strength of the rock is reduced by the thawing of the active layer while 120 

hydrostatic pressure increases, favouring the initiation of rockfalls (McColl and Draebing, 2019). In autumn, the cooling of 

the rock by conduction, possibly amplified by convection (Moore et al., 2011), leads to the freezing of water and the increase 

of cryostatic pressure. Ravanel et al. 2017 also identify autumn as a favourable period for the occurrence of large-scale 

destabilisations (V > 10,000 m3), as deep warming of the terrain reaches its maximum at this time of the year. 

Based on the literature presented above, one of the interests of our study will be to better characterize and quantify the role of 125 

meteorological and climatic forcing in the triggering of rockfalls occurring in the Grand Couloir du Goûter. 
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Figure 1: Mechanical and thermal processes at the origin of rockfalls in high Alpine environments. 

3 Study site 

3.1 The Mont Blanc massif, the birthplace of mountaineering 130 

The MBM is located in the north-western Alps, between Switzerland, Italy and France (Fig. 2). It covers ~550 km². About 

30% of its surface is covered with ice (Gardent et al. 2014) with 121 glaciers (Paul et al. 2020) including the Mer de Glace, 

the largest glacier in the French Alps with an area of 30 km². 28 summits exceed 4,000 m a.s.l., including the Mont Blanc 

(4,809 m a.s.l.), the highest summit in the massif and of the European Alps. The conquest of these summits, and particularly 

the Mont Blanc, led to the birth of mountaineering at the end of the 18th century (Hoibian and Defrance, 2002). Nowadays, 135 

mountaineering is an emblematic sport and an important social/economic activity in the massif, attracting tens of thousands of 

climbers every year. In 2017, 51,687 overnight stays were recorded in the 16 high mountain refuges of the French and Swiss 

sides of the massif (data: French Federation of Alpine Clubs and Swiss Alpine Club). In 2019, on the initiative of Chamonix 

(France) and Courmayeur (Italy), mountaineering was inscribed by UNESCO on the Representative List of the Intangible 

Cultural Heritage of Humanity (Debarbieux, 2020). 140 

3.2 The Grand Couloir du Goûter, on the classic route up Mont Blanc 

The Grand Couloir du Goûter (Fig. 2) is located on the west face of the Aiguille du Goûter (3863 m a.s.l.), itself located in 

the south-western part of the MBM. The classic route up Mont Blanc crosses this couloir in its lower part, at an altitude of 

https://doi.org/10.5194/nhess-2021-128
Preprint. Discussion started: 27 April 2021
c© Author(s) 2021. CC BY 4.0 License.



6 

 

3,270 m a.s.l. over an horizontal distance of about 70 m. The route then follows the left bank of the couloir over an elevation 

gain of almost 500 m up to its summit at 3,817 m a.s.l. This sector is one of the most difficult part of the route because of its 145 

steepness (slope angle between 45 and 60°), and also the most dangerous because of rockfalls whose frequency and volume 

have increased during recent decades (Mourey et al. 2019). According to Alpes-Ingé (2012), a rockfall occurs on average 

every 28 minutes in summertime. In 2015, due to two heat waves during which rockfalls were particularly frequent, climbing 

the couloir was strongly discouraged and the Goûter refuge (located on the summit ridge of the Aiguille du Goûter, Fig 2) was 

closed by prefectural decree from July 15th to 31st and then from August 6th to 19th, corresponding to 23% of the traditional 150 

opening period of the refuge. These closures resulted in a drop in the number of overnight stays of 17% for the Goûter refuge 

and 39% for the Tête Rousse refuge (located at the base of the face) compared to the average for the three previous years. 

The topographical and geological characteristics of the Grand Couloir du Goûter are particularly favourable to the triggering 

of rockfalls. Indeed, the sector is formed of highly fractured gneiss and micaschists (Mennessier, 1977; Alpes-Ingé, 2012), 

with a slope angle between 45 and 60° over an altitude difference of 700 m. 155 

4 Methodologies 

Several factors potentially responsible for the triggering of rockfalls were studied and quantified in parallel with the traffic on 

the route through a multi-parameter and multi-method monitoring system composed of (Fig. 2): (i) 5 seismic sensors to detect 

the impacts of rockfalls, day and night, independently of weather conditions, and to estimate their intensity ; (ii) an automatic 

digital camera to monitor the evolution of snow-covered surfaces in the couloir; (iii) 3 subsurface temperature sensors installed 160 

10 cm deep in the rock to analyse the presence/absence of the permafrost and its thermal regime; (iv) a pyroelectric sensor to 

record the number, time and direction of climbers crossing the couloir; (v) a high-resolution topographical survey by terrestrial 

laser scanning to define the topography of the couloir ; (vi) 2 weather stations measuring air temperature, one near the Tête 

Rousse glacier (3,126 m a.s.l.) and the other close to the Goûter refuge (3,817 m a.s.l.); and (vii) a rain gauge, positioned at 

the base of the couloir (3,270 m a.s.l.) and measuring liquid rainfalls. In this section, the main methods used are detailed in 165 

order to clarify their interests and limitations. 
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4.1 Detection and characterization of rockfalls 170 

5 autonomous seismic sensors (Zland3C nodes), short period with a sampling frequency of 250 Hz, installed on both sides of 

the couloir (Fig. 2) from the 29/06 to the 04/09/2019 (68 days) were used for the detection of the seismic signals generated by 

rockfalls and to characterize their energy. The detection was carried out following the method developed by Helmstetter and 

Garambois (2010), by isolating peaks in the spectrograms stacked in the frequency band [130] Hz, with amplitudes greater 

than 4 times the noise level (calculated over 30 s at the onset of the records). All the peaks separated by less than 30s are 175 

considered to be part of the same event. This method makes it possible to isolate a large number of signals, not all of which 

are rockfalls (earthquakes, anthropogenic noise including helicopters). A visual expert analysis was then used to classify these 

signals and identify those due to rockfalls. The visual expertise was trained by field comparison done 2 times during 2 hours, 

once in July and once in August 2019. We decided to keep only the largest signals, i.e. when rockfall origin was sure. This 

Figure 2: Study site and interdisciplinary monitoring system of the Grand Couloir du Goûter. The years indicated correspond to 

the presence of the different sensors (aerial photography from © Microsoft, 2019; Ground picture: J Mourey, 2019). 
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corresponds to about only 10% of the detected signals. Finally, the most energetic peaks of each signal were located by a 180 

beam-forming method (Lacroix and Helmstetter, 2011). The signals for which the majority of peaks were located in the couloir 

(calculated according to Lacroix and Helmstetter, 2011) were kept (Fig. 3). The others were considered as coming from outside 

the couloir. This strategy makes it possible to obtain an inventory of rockfalls in the couloir, precisely located in time and 

space, with their energy. 

Quantifying rockfalls volumes from seismic signals is the subject of many studies (Dietze et al. 2017; Hibert et al. 2017; Le 185 

Roy et al. 2019). Volumes can be derived from the characteristics of the seismic signal (duration, energy, amplitude) and are 

a function of the distance to the source, the type of ground impacted, the drop height, etc. Quantification of volumes requires 

calibration of the seismic data with an independent source (comparison of DTMs acquired two years apart, for example for 

Durand et al. 2018). Such a calibration was not possible here, as only one DTM was acquired by LiDAR (see § 3.2). However, 

as the impact sources are all located at the center of the seismic network, the signal energy can be considered as a first relative 190 

indicator of the volume of rockfall. It should also be noted that this volume will tend to be underestimated when there is snow 

in the corridor, which absorbs the impacts. 

According to Dietze et al. 2017, seismic sensors positioned 200 m away from the impact zone of rockfalls can detect events 

with a minimum volume of 0.05 m3. In our study, the sensors are positioned particularly close to the impact zone (approx. 50 

m) and are therefore certainly able to detect volumes smaller than 0.05 m3 but not necessarily exhaustively. Rockfalls signals 195 

with low peaks, related either to small rocks/blocks that slide down without impacting the ground, or snow-damped 

rocks/blocks are thus not necessarily recorded. The results presented in the following sections therefore underestimate the 

amount of rockfalls, especially the smaller ones.  The major interest of this data acquisition method is its ability to detect 

rockfalls continuously, at any time (even at night), and in any weather conditions. 
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 200 

Figure 3: A. Seismic waveforms of a rockfall occurring on the 2nd of August 2019, recorded by the 5 sensors (noted S1 to S5 and 

located with blue triangles on the maps of subplots B). The main impacts (noted 1 to 8) are automatically located by the beam-

forming method. B. Spatial distribution of the inter-trace correlation for each of the 8 impacts. The optimum location is indicated 

with a blue cross. The elevation iso-contours are displayed every 25 m. 

4.2 Photographic monitoring of the snow cover 205 

In order to study the evolution of the snowpack, an automatic camera was installed in June 2016 (Fig. 2). It takes 4 photos per 

day of the couloir over the whole summer period. The photos were processed in 3 steps: i) manual selection of the images 

suitable for studying snow (absence of clouds, fog, or shadows); ii) on each photo, the pixels associated with snow are detected 

and isolated. Only the blue channel is used (Fedorov et al. 2016) in which the histogram of the pixels presents two color peaks 

whose thresholding allows to efficiently segment the snow pixels from the snow-free pixels; this segmentation is done 210 

automatically using the Isodata algorithm (Ridler and Calvard, 1978); iii) these same pixels are then converted into an area in 

m3 by a monoplotting technique: based on the intrinsic (sensor size, focal length, optical center, distortion) and extrinsic 

(position and orientation in space) parameters of the camera (Hartley and Zisserman, 2003), a ray-tracing on a DTM - acquired 
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in 2016 by Terrestrial Laser Scanning (TLS, LiDAR method for Light Detection And Ranging) using an ILRIS LR Optech, 

from the surroundings of the Tête Rousse refuge - is carried out for each pixel of the photos, which are then converted into a 215 

metric surface (Flöry et al. 2020). 

4.3 Characterisation and modelling of the permafrost thermal state 

Continuously measuring the rock surface temperature (RST) for at least one full year (Gruber et al., 2004; Magnin et al. 2015) 

allows to verify the presence/absence of permafrost. 3 Geoprecision PT100.0 sensors (C1, 3,345 m a.s.l.; C2, 3,460 m a.s.l.; 

C3, 3,665 m a.s.l., on Fig. 2) with M-Log5W loggers (resolution: 0.01 ° C, accuracy +/- 0.1°C with temperature recorded every 220 

3 hours) were installed out of the sunlight, 10 cm deep in the rock in July 2016. To ensure that there is no influence of the air 

temperature, a silicone seal ensures that there is no air circulation between the outside air and the hole in which the sensor is 

installed (Ravanel et al. 2017). The acquired data allow the analysis of the annual thermal regime of the subsurface and attest 

the presence/absence of permafrost.  

RST were also used to simulate the evolution of permafrost temperature at depth by a heat conduction model (Hipp et al. 225 

2014). Time series of daily RST for sensor C3 were reconstructed by fitting a linear regression model between the RST 

measured by the sensor and the local air temperature long-time records (data from Météo France). We tested the fit of the 

model with air temperature records at Chamonix (1,042 m a.s.l.) and at the Aiguille du Midi (3,842 m a.s.l.). The best 

correlation between the measured daily RST and the daily air temperature was obtained with the Aiguille du Midi time series 

(Correlation coefficient of 0.9 versus 0.8 for the Chamonix time series). We therefore used the air temperature time series of 230 

the Aiguille du Midi for the period August 2003 to May 2020. This time series was then used to force a MATLAB diffusive 

transient thermal model, the CRYOGRID2 model (Westerman et al. 2013), based on a 1D non-linear diffusion equation taking 

into account rock properties, air content, water/ice content and associated thawing/freezing processes through latent heat 

consumption and release. The ground properties (air content, water/ice content) were deduced from geotechnical surveys at a 

depth of 4 to 7 m, carried out in 2006 for the construction of the Goûter refuge. 235 

4.4 Continuous monitoring of climbers’ traffic 

The number of climbers following the route was continuously monitored from the June 29th to September 15th in 2017, 2018 

and 2019 using a pyroelectric sensor (Fig. 2; Mourey and Ravanel, 2017) installed on the side of the “trail” before the section 

that crosses the couloir. This type of sensor combines passive infrared technology with a high-precision lens to detect the heat 

emitted by the human body and determine the direction of travel, with the crucial advantage of not being influenced by weather 240 

conditions. Thus, the number of visitors that passed the sensor and their direction of travel were recorded continuously, with 

a value produced in 15-minute sequences. This means that the number of climbers and their direction of travel were known 

for each quarter of an hour. The sensor’s margin of error was quantified by performing at least three manual counting sessions 

at the site each summer. It is important to point out that the sensor indicated the number of times a person has passed the sensor 
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and not the number of individuals climbing the Mont Blanc: a climber who climbed up Mont Blanc and got back down was 245 

counted twice by the sensor. 

5 Results 

5.1 Rockfalls in the Grand Couloir du Goûter during the summer 2019 

In 2019, over 68 days of acquisitions (29/06 to 03/09), 26,339 signals were detected. 2,648 were classified as corresponding 

to rockfalls located inside the couloir. It gives an average of 39 events per day. A rockfall is thus recorded every 37 minutes 250 

on average indicating a significant geomorphic activity. The number of events is lower in the second half of the season: 72% 

of the events are recorded in July against 28% in August. 

The energy of an event measured in 2019 is 0.16 megajoules in average. 88% of the events recorded have an energy lower 

than the average (Fig. 4). Conversely, the number of events with a very high energy (> 4 megajoules, i.e. an energy at least 25 

times greater than the average; Fig. 4) is relatively low compared to the total number of rockfalls: 19 events, i.e. 0.7% of the 255 

total. In 2019, with the exception of the 29/06, all the most energetic events occurred after July 27th (Fig. 4). The snow 

potentially dampened the impacts of the blocks in early July. However, as the majority of the couloir was not covered by snow, 

it can be estimated that a large-scale event would have been measured as such anyway. 

 

Figure 4: Seismic records in 2019. A. Number of rockfalls per hour. B. Maximum energy of each rock destabilization. 260 
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On average, on a daily basis, rockfalls are distributed as follows (Fig. 5): the period with the lowest activity is in the morning 

between 2 am and 12 pm, with a minimum of hourly activity between 9 am and 10 am (1 event every 85 min.). The activity 

then increases markedly between midday and 8 pm with a maximum frequency between 6 pm and 7 pm (1 event every 17 

min.). Then, the frequency decreases progressively, until 9 am. The most energetic rockfalls occur between 3 pm and 10 pm, 

when they are also the most frequent (Fig. 5). 265 

 

Figure 5: Evolution over 24 hours of (i) the average number of rockfalls per hour and (ii) the average energy of a rockfall per hour. 

5.2 Air temperature 

According to semi-hourly measurements from the Tête Rousse meteorological station, at 3,126 m a.s.l., the average 

temperature over the period 29/06 to 04/09 was 5.8°C with a maximum at 15°C (24/07) and a minimum at -2.9°C (15/07). 270 

Over the whole period, there were only 3 FTC associated to three short periods with negative air temperatures, one of 15 hours 

(15/07), another of 17 hours (13/08) and the last of 4 hours (13/08). At the top of the couloir, at the level of the Goûter refuge 

(3,817 m a.s.l.), over the same period, the average temperature was 0.2°C with a maximum of 9.9°C (25/07), a minimum of -

15.9°C (02/08) and there were 39 FTCs, with an average of 0.5 cycles per day. 

5.3 Rock temperature evolution and permafrost distribution 275 

In situ measurements of subsurface temperatures over two years (2018 and 2019) confirm the presence of permafrost in the 

Grand Couloir du Goûter. The lower part of the couloir is located near the lower permafrost limit with an annual mean 

temperature of -1.1°C (sensor C1, 3,345 m a.s.l.). The temperature is lower in the middle and upper parts of the couloir, with 
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an annual mean temperature of -2.8°C for C2 (3,460 m a.s.l.) and -3.4°C for C3 (3,665 m a.s.l.). These results confirm the 

permafrost distribution map of the Mont Blanc massif established by Magnin et al. (2015) (Fig. 6.A). 280 

Over the period of rockfall recordings were recorded, the number of EFTC at 10 cm depth in the rock is very limited. Two 

EFTC were measured by sensor C3 (upper part of the couloir) and none for sensors C1 and C2 in the lower and middle part of 

the couloir, respectively. 

The temperatures at depth, simulated with CRYOGRID2 for the period 2010-2020, show a trend of deepening of the active 

layer since 2010 from 0.75 m (2010) to 1.5 m (2019) (Fig. 6), in response to the general air temperature increase. 285 
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Figure 6: Thermal stat of permafrost and its evolution.  A. Permafrost map from the modelling of Magnin et al. 2015 and position 

of ground temperature sensors. B. Simulation of rock temperatures at the level of sensor C3 with CRYOGRID2 for the period 2010-

2020. 
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5.4 Evolution of snow-covered areas 290 

During the summer 2019, measurements of snow surfaces in the couloir cover the period 29/06 to 04/09. The snow-covered 

surfaces show a progressive decrease between 29/06 and 31/07. At this date, only a small residual snow pack was still present 

in the center of the couloir (Fig. 8). From 01/08 to 04/09, the corridor was completely free of snow except for the period from 

20/08 to 25/08 when the whole couloir was powdered with ~5 cm of snow which completely melted in five days. On 08/08 

and 28/08, the upper part of the couloir was powdered with snow that melted in a few hours. 295 

5.5 Climber traffic 

The results of the climbers traffic measurements are presented for the summer season 2019 between the 29/06 and the 15/09. 

Over this period, there were 20,424 ( 7.2%) passages on the route, of which 41.9% were on the way up and 58.1% on the 

way down. Some of the climbers come from other routes, in particular from the Trois Mont-Blanc route (via the Aiguille du 

Midi cable-car and the Cosmiques refuge), from the Italian side of Mont Blanc, or from the Aiguille de Bionnassay and use 300 

the Goûter route on the way down. The daily number of climbers is slightly higher in July (271) than in August (248). Over 

the whole season, the number of climbers is very dependent on the weather. When the weather deteriorates, the number of 

visitors decreases. Conversely, a window of one or two days of good weather is enough to increase, sometime significantly, 

the number of climbers again (Fig. 7.A). 

On average, there are 259 passages per day, which are organised according to the time profile displayed on Figure 7.B. The 305 

maximum was 497 passages in one day (14/08). On the way up, there are two initial peaks in traffic at 2-3 am and 5-6 am. 

These correspond to the two starts from the Tête Rousse refuge. Then, there is a main peak between 10 am and 3 pm, 

corresponding to all the climbers coming from the Mont Blanc tramway. The first train reach the Nid d'Aigle at the earliest at 

8.30 am. Therefore, the first climbers reach the couloir at around 10 am. On the way down, there is a peak between 7 am and 

3 pm, with a maximum between 9 am and 10 am which corresponds to all the climbers coming down. As a result, the vast 310 

majority of climbers cross the couloir between 10 am and 2 pm, with a peak between 12 pm and 1 pm. In one hour, 12.7% of 

the daily total of climbers cross the couloir. 
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Figure 7: A. Daily variation of climber traffic during the summers 2019. B. Average hourly distribution of climber traffic during 

the summers 2019 and evolution of the average number of rockfalls per hour. 315 

6 Discussion 

We can distinguish 3 periods in 2019 according to the daily occurrence of rockfalls (Fig. 8). Period 1 covers the first half of 

the season (29/06 to 30/07, i.e. 32 days), characterized by the highest rockfall frequency (1916 events, i.e. 1 every 24 min.). 

Then, Period 2 (31/07 to 22/08, i.e. 23 days) displays a clear decrease in the rockfall frequency with 353 events, i.e. 1 every 

94 minutes. Finally, Period 3 (23/08 to 04/09, i.e. 13 days) shows a slight increase in the frequency (379 events measured, i.e. 320 

1 every 49 min.). In this section, the factors conditioning rockfalls will be discussed according to these 3 periods. 

6.1 Factors controlling rockfalls occurrences 

On a seasonal scale, rockfalls are very numerous during the snow cover melting period (Fig. 8 - Period 1). Then, their frequency 

sharply and rapidly decreases when snow disappears in the couloir or when only a small residual firn is still present in the 

lower part of the couloir, at the level of the traverse (Fig. 8 - Periods 2 and 3). This finding is in agreement with previous 325 

observations in high alpine environments (Krautblatter et al. 2013; Draebing et al. 2014; Draebing et al. 2017; Weber et al. 

2018) indicating that the first favourable period for rock instability after the cold season is the period of snowpack melt. The 

gradual melting produces liquid water that infiltrates into rock cracks - particularly fractured in the study area - on the margins 

of snow-covered surfaces (Strass, 2005). This causes the rock to heat up by advection and the ice to melt in the cracks (Hasler 
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et al. 2011). This results in the deepening of the active layer (Gruber and Haeberli, 2007) and a decrease in the strength of the 330 

ice joints (Krautblatter et al. 2013; Mamot et al. 2018), which leads to a decrease in the rockwall stability (Mellor, 1971, 1973; 

Draebing et al. 2014). In parallel, the presence of water in the cracks leads to an increase in hydrostatic pressure. The presence 

of moisture in the cracks is usually favoured by a northern orientation, by exposure to the wind which brings precipitation 

(Strass, 2005) and by a high elevation (Draebing, 2020). Therefore, the presence of moisture in the cracks of the Grand Couloir 

du Goûter is certainly favoured by its western orientation and its elevation. In addition, the rock surfaces recently cleared of 335 

snow are heated by conduction, which further contributes to the thickening of the permafrost active layer. Meltwater can also 

eventually refreeze, especially in connection with night-time refreezing, and lead to an increase in cryostatic pressure 

(Wegmann and Gudmundsson, 1999; Krautblatter, 2010; Hasler et al. 2012; Blikra and Christiansen, 2014; Luethi et al. 2015). 

However, the latter phenomenon is limited in this study area as the rock temperature at 10 cm depth remains positive during 

almost the entire summer season (Fig. 8). Similar situations where the infiltration of snow melt water leads to the deepening 340 

of the active layer through advective heat transfer in fractured permafrost terrain, the melting of ice in the cracks and the 

opening of the cracks, thus promoting rockfalls, have been observed by many authors (Wegmann and Gudmundsson, 1999; 

Krautblatter, 2010; Hasler et al. 2012; Blikra and Christiansen, 2014; Luethi et al. 2015). 

Conversely, during Periods 2 and 3 when the couloir is completely cleared of snow, the quantity of water present in the rock 

is lower, limiting the action of the thermo-mechanical processes involved in the rockfall triggering (Fig. 1). The thickening of 345 

the permafrost active layer only continues by conduction and, occasionally, by advection during precipitation. As a result, the 

frequency of rock destabilization is two times lower than during Period 1. 

The most energetic rockfalls occur during Periods 2 and 3 (15 out of 19 events). This finding is in agreement with previous 

studies on rockfalls in the Mont Blanc massif (e.g. Ravanel and Deline, 2010; Ravanel et al. 2017) indicating that permafrost 

degradation leads to an increase in rockfall mobilizing large volumes (rock collapse type, V > 100 m3), mostly in sectors where 350 

the rock is highly fractured, and in particular at the end of the summer season when the penetration of the seasonal heat wave 

in the rock is already well advanced and the active layer is the deepest (Legay et al. in rev.). According to these studies, the 

events mainly occur on slopes between 40 and 60°, between 3,400 and 3,500 m a.s.l., an altitudinal range where the permafrost 

often reaches mean annual surface temperatures between -2 and 0°C at a depth of 10 cm. Also, the Grand Couloir du Goûter, 

located between 3,200 and 3,800 m a.s.l. (the lower part of the couloir corresponds to the lower limit of the permafrost; Fig. 355 

6.A), with a slope angle of 45 to 60°, constituted by highly fractured gneiss, and with an active layer that reaches its maximum 

thickness in September (1.5 m in 2019 according to the CRYOGRID2 modelling, Fig. 6.B) brings together conditions that are 

particularly prone to the occurrence of such rock collapses due to permafrost degradation. Moreover, the most energetic 

rockfalls occurred mostly (16 out of 19 events) during precipitations or in the following 24 hours, which suggests once more 

the key role played by liquid water infiltration in rock cracks in triggering destabilisations, including the largest ones. 360 
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Figure 8: Comparison between the number of rockfalls per hour and the evolution of the snow-covered surfaces, precipitations and 

ground temperature on the upper part of the couloir (sensor C3). 

On a daily scale, the number of rockfalls correlated with the air temperature and consequently with the rock temperature (Fig. 

9). The number of events starts to increase on average 3h after the return of positive air temperature at the top of the couloir. 365 

The rockfall frequency increases between 1 pm and 7 pm with a maximum between 6 pm and 7 pm (Fig. 5). This maximum 

occurs on average, over the whole season, 6 hours after the warmest air temperature of the day at the top of the couloir and 3 

hours after the warmest temperature at Tête Rousse. Conversely, the time of the day with the lowest rockfall frequency is 

between 9 am and 12 pm, after the coldest period of the day (between 11 pm and 7 am). There is therefore a time lag of several 

hours between the maximum/minimum air temperatures and the rockfalls, which is probably linked to the thermal inertia of 370 

the snow and the rock surface. Moreover, the number of events starts to increase when the couloir gradually turns into the sun, 
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between 12 pm and 1 pm at the beginning of the season, and between 1 pm and 2 pm at the end of the season. The number of 

rockfalls only starts to decrease after 8 pm, which corresponds to the moment when the air temperature at the top of the couloir 

falls below 0°C. The nightly refreezing and the daytime thawing at the top of the couloir thus seem to have an effect on the 

rockfall triggering. 375 

Specifically, despite the same number of EFTC in Periods 1 and 2 (based on air temperature at the top of the couloir), rockfalls 

are twice as frequent in Period 1 (Fig. 8). It highlights the importance of the snow melt, the increased hydrostatic pressures 

and the melting of ice in the cracks in the rockfall triggering. Period 2 is also the coldest (average air temperature of -0.7°C at 

the top of the couloir) with a relatively limited and short daily thaw (mean hourly temperatures are between -1.7 and 0.7°C; 8 

hours per day of positive air temperature compared with 13 hours for the Period 1; Fig. 9) which limits the action of all the 380 

thermo-mechanical processes. When the couloir is completely clear of snow (Periods 2 and 3), the number of rockfalls is 

greater in Period 3 (1 event every 94 min in Period 2 compared with 1 every 39 min in Period 3). It is likely that this difference 

is related to the more pronounced freeze-thaw cycles during Period 3 (mean hourly temperatures are between 2.6 and -1.5°C) 

for a daily thaw period of 11 hours (Fig. 9). Moreover, during this last period, the thermo-mechanical processes are probably 

all the more effective as the melting of the snow that fell on August 20th-21st brings liquid water into the cracks of the rock 385 

(Fig. 8). However, the fact that there is no refreezing of the rock at 10 cm depth (Fig. 8) underlines the weak morphogenic 

potential of daily freeze-thaw cycles and thus their limited role in triggering events. It is likely that nocturnal refreezing 

(indicated by air temperatures at the Goûter station and associated with radiative cooling of the surface) only has an impact on 

the first few centimeters below the rock surface with relatively low cryostatic pressures (Matsuoka, 1990; Seto, 2010). It 

probably leads to the cementation of only the finest elements, a halt in the melting of the snow present during Period 1 and the 390 

resulting processes, and thus reduces the frequency of destabilization. On the contrary, the progressive increase in temperature 

during the morning reactivates the melting of the snow and all the associated thermo-mechanical processes and, in particular, 

the supply of liquid water into the cracks which implies an increase in the rockfall frequency. The clear link between air/rock 

temperatures and the rockfall frequency also suggests that some of the destabilizations may be triggered by conductive 

expansion of the rock during the warmest hours of the day (Collins and Stock, 2016). 395 
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Figure 9: Evolution over 24 h, for the Periods 1, 2 and 3, of (i) the average number of rockfalls per hour, (ii) the mean hourly ground 

temperature in the upper part of the couloir (C3) and (iii) the mean hourly air temperature at the Tête Rousse and the Goûter 

weather stations. 

Various mechanical processes can thus trigger rockfalls in the Grand Couloir du Goûter. These are influenced by thermal 400 

factors conditioned by meteorological parameters (air temperature, precipitation, and snow melt). Under the conditions of our 

study, it remains difficult to determine precisely which process – or combination of processes – triggers the rockfalls. During 

the snowmelt period (Period 1), it is difficult to know whether it is the ice melt in the cracks by meltwater infiltration or by 

convection/conduction of heat, the alternation of daily freeze-thaw cycles on the surface, the hydraulic pressures increase or 

the flow of water on the surface that causes most of the destabilization. In the topographic conditions of the Grand Couloir du 405 

Goûter, the periods of snowmelt, constrained by the seasonal increase in air temperatures, are the periods when the thermo-

mechanical processes favouring the occurrence of rockfalls are the most active (Fig. 1). Conversely, the action of these 

processes is inhibited when the couloir is cleared of snow, suggesting the important role of water in its liquid state. 

6.2 Climbers’ traffic and rockfalls 

The number of climbers following the route does not vary according to the frequency of rockfalls and climbers take little to 410 

no account of rockfalls when planning their ascent. 

Indeed, on a seasonal scale, frequent or – conversely – very rare rockfalls do not lead to a change in the number of climbers. 

In 2019, for the same number of days of good weather, there were as many passages in July (8,408) as in August (7,708), 

whereas rockfalls were 2.6 times more frequent in July. The number of climbers is mainly determined by the weather and 

probably by other socio-economic factors and management of the route, such as the refuges booking procedures. 415 

In terms of accidents, between 1990 and 2017, there were as many rescue operations in July as in August (114 and 113 

respectively) and as many in June as in September (54; Mourey et al. 2018). However, the measurements carried out in 2019 

show that the rockfall frequency and the factors that condition them are very variable during the same season. This observation 

reinforces the assumption that the number of accidents is mainly correlated to the number of climbers, which is very similar 

in July and August, as well as in June and September. 420 

On a daily scale, over the period 1990-2017, the intervention of the professional rescuers for an accident is demanded on 

average around 1 pm (Mourey et al. 2018). This corresponds to the time when there are the most people in the area of the 

Grand Couloir sector, with a number of rockfalls that has already doubled compared to mid-morning. Furthermore, when the 

rockfalls are the most frequent, i.e. between 6 pm and 8 pm, the number of climbers is reduced. This observation confirms the 

need for climbers arriving from the Nid d'Aigle to cross the couloir as early as possible, if possible before midday when the 425 

west face of the Aiguille du Goûter is still in the shade, and not to wait until the end of the afternoon or the beginning of the 

evening which is the most dangerous period of the day, as some climbers do, in order to avoid arriving too early at the Goûter 

refuge. 
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According to our observations on the field, some rockfalls are triggered by the climbers themselves, from the upper left part 

of the couloir. The data acquired do not allow us to measure precisely the anthropogenic part of the rockfalls. However, there 430 

are two time periods when the number of rockfalls increases slightly: during the night, between 4 am and 5 am, and in the 

morning, between 8 am and 9 am, i.e. 2 or 3 hours after the first traffic peaks at the bottom of the couloir (at 2-3 am and 5-6 

am, respectively; Fig. 7.B). This 2-3 hours time-delay between the peaks of traffic and rockfall frequency corresponds to the 

time needed for climbers to reach the upper part of the couloir from the traverse, where they are the most likely to trigger 

rockfalls. Thus, these slight increases in the number of events could be – at least partly – associated with an anthropogenic 435 

triggering. 

6.3 Limitations of the study and perspectives 

Firstly, the smallest rockfalls or those without marked impacts in the couloir – yet potentially fatal for climbers – are not 

necessarily detected in our study, which rejects all the signals of uncertain sources (~50% of the total number of signals). The 

detection of the small rockfalls in the seismic records could therefore be improved using deep learning algorithms (e.g. Hibert 440 

et al. 2017), trained on sample signals checked on the field.  

Secondly, it would be interesting to maintain seismic instrumentation for longer periods at the beginning and end of the summer 

season. According to the temperature measurements in the rock in the upper part of the couloir, the periods in which freeze-

thaw cycles are most numerous occur in May-June and October-November. Also, the seismic sensors measuring the rockfall 

occurrences were installed too late and de-installed too early to study the effect of a high frequency of daily freeze-thaw cycles 445 

on rockfalls. However, it can be estimated that in spring, as the snow insulates the ground from air temperature variations, 

frost weathering is rather limited, except perhaps at the level of the rock ridges (potentially important suppliers of rocky 

material) on the sides of the couloir, which are generally not covered by a thick snow cover. During summer, the couloir is 

clear of snow but a refreezing at 10 cm depth in the rock almost never happens. There can therefore be no – or only limited – 

increase in cryostatic pressures. The action of processes linked to the heating of the rock by convection and conduction, and 450 

to the infiltration of liquid water into the fractures in the rock, are therefore favoured. Conversely, in the Autumn, the freeze-

thaw cycles are favoured by the absence of snow in the couloir. Furthermore, although a first field test was carried out during 

the summer of 2018 with 3 seismometers (Le3D Lennartz) installed on the right bank of the couloir and operational for 3 

weeks with results comparable to 2019 (number of events, daily and seasonal distribution), the analysis presented here only 

covered one season. It would be interesting to compare to other seasons to assess the reproducibility of the results. 455 

In order to better quantify the triggering processes, further measurements, including pressure and crack opening/closing sensors 

(strain gauges, inclinometers; McColl and Draebing, 2019; Weber et al. 2019) would have been required. 

Finally, the evolution of the snow cover in the couloir, identified in this study as an important factor in the rockfall triggering, 

was only evaluated from snow-covered surface data which only gives biased information on the quantity of liquid water 

available during melting. For a powdering of snow or a fall of several decimetres of snow on the whole couloir, the snow-460 

covered surfaces will be very similar whereas the quantity of liquid water resulting from the melting are very different. 
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7 Climate change and future projections 

In the current socio-economic and cultural context, the Mont Blanc is likely to remain one of the most climbed peaks in the 

world. However, climate change is likely to lead to an increase in rockfalls, mainly due to the permafrost degradation. Indeed, 

in the Alps, it is estimated that the climate will warm by 3-4°C in winter and 3-7°C in summer by 2100 (IPCC, 2019; RCP 8.5 465 

scenario). This rise in temperature will inevitably have a potentially significant effect on rockfalls regime in the Grand Couloir 

du Goûter. The 0°C isotherm is expected to rise by 400 m in summer (RCP 8.5 scenario), from 3,800 m today to 4,200 m a.s.l. 

in 2050, leaving only a few areas of the MBM outside the melt zone (Cremonese et al. 2019). In parallel, the freezing frequency 

will decrease by 45-50 percentage points between 3,500 and 4,500 m a.s.l. by 2100 based on the RCP 8.5 scenario (Pohl et al. 

2019). This will reduce the daily-scale frost weathering. Snowmelt will occur ever earlier in the summer season and probably 470 

over a shorter period. As a result, a significant amount of liquid water will infiltrate into the cracks of the rock but over a 

shorter period of time. Although precipitation does not show a decreasing trend in the Alps, the frequency of intense episodes 

of precipitation will increase (Météo France data - Drias-climat). This implies that large quantities of liquid water could 

punctually infiltrate the cracks of the rock. It is therefore likely that rockfalls linked to liquid water infiltration and the resulting 

thermo-mechanical processes will be particularly frequent but possibly over shorter periods. Finally, the ongoing degradation 475 

of permafrost will continue and intensify (Magnin et al., 2017; Biskaborn et al. 2019). It can therefore be estimated that the 

most voluminous rockfalls that tend to occur at the end of the summer season or in favor of heatwaves – which are also more 

frequent (Della-Marta et al. 2007) – will be enhanced with an active layer that will become increasingly deep. 

8 Conclusions 

Our results show that in the high-Alpine and permafrost-affected Aiguille du Goûter west face, rockfalls are mostly frequent 480 

at the beginning of the summer season, i.e. during the snowmelt period which favors the action of thermo-mechanical processes 

linked to the infiltration of liquid water into the cracks of the rock. During periods when the couloir is completely clear of 

snow, rockfalls are 2.5 times less frequent, and the thermo-mechanical processes involved in the rockfall triggering are limited 

by the absence of moisture in the ground. The most energetic events are occurring at the end of the summer season, as deep 

warming of the terrain reaches its maximum. These field results confirm the conceptual approach proposed by Draebing and 485 

Krautblatter (2014) who identified early summer season has a period particularly prone to rockfalls in context of permafrost 

due to snow melt and liquid water infiltration into the rock cracks, and autumn with the penetration of the summer heat wave 

deep into the rock. 

These results also allow a better evaluation of climbers' vulnerability in this sector and show that climbers' awareness of the 

risk of rockfalls remains limited. What’s more, they do not adapt – or only slightly – their behavior to this risk, despite a 490 

particularly high accident rate. Important work on prevention and dissemination of the knowledge here acquired (newsletters, 

training for professionals and amateurs, awareness campaigns) among mountaineers is therefore still really necessary. 
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The study we carried out applied the recommendations of McDowel and Koppes (2017) (i) to acquire interdisciplinary, precise 

data at a fine scale in order to take into account the specificities of the study area and not to simply transpose dynamics visible 

at larger scales; (ii) to take into account the complex interactions existing between changes in the physical environment and 495 

the socio-economic, cultural and political conditions specific to a study area, the implementation of adaptation strategies being 

not solely guided by physical changes in the environment; and (iii) to recommend adaptation methods adapted to the context 

in order to lead to appropriate adaptation plans. At the Grand Couloir du Goûter, we acquired interdisciplinary data on a fine 

scale in partnership with the main actors concerned (local authorities, the French Federation of Alpine Clubs, the military 

forces in charge of the rescue operations, and hut keepers). This has certainly contributed to the good reception of the first 500 

results which have been disseminated to the mountain community and to the actors in charge of the management of the route 

through a research report (available for free in French and English on the Petzl Foundation website) and a web video clip 

(viewed more than 500,000 times and projected at the Science and Mountains Festival in Grenoble), and has enabled the 

concertation process to be re-launched in order to adapt the management of the route and the prevention measures applied to 

mountaineers. 505 
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